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Abstract— Consider a wireless network of n nodes represented
by a (undirected) graph G where an edge (i, j) models the fact that
transmissions of i and j interfere with each other, i.e. simultaneous
transmissions of i and j become unsuccessful. Hence it is required
that at each time instance a set of non-interfering nodes (corre-
sponding to an independent set in G) access the wireless medium.
To utilize wireless resources efficiently, it is required to arbitrate
the access of medium among interfering nodes properly. Moreover,
to be of practical use, such a mechanism is required to be totally
distributed as well as simple.

As the main result of this paper, we provide such a medium
access algorithm. It is randomized, totally distributed and simple:
each node attempts to access medium at each time with probability
that is a function of its local information. We establish efficiency of
the algorithm by showing that the corresponding network Markov
chain is positive recurrent as long as the demand imposed on the
network can be supported by the wireless network (using any
algorithm). In that sense, the proposed algorithm is optimal in
terms of utilizing wireless resources. The algorithm is oblivious
to the network graph structure, in contrast with the so-called
polynomial back-off algorithm by Hastad-Leighton-Rogoff (STOC
’87, SICOMP ’96) that is established to be optimal for the complete
graph and bipartite graphs (by Goldberg-MacKenzie (SODA ’96,
JCSS ’99)).
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1. INTRODUCTION

We consider a single-hop wireless network of n nodes
or queues represented by V = {1, . . . , n}. Time is discrete
indexed by τ ∈ {0, 1, . . . }. Unit-size packets arrive at queue
i as per an exogenous process. Let Ai(τ) denote the number
of packets arriving at queue i in the time slot [τ, τ + 1).
For simplicity, we shall assume Ai(·) as an independent
Bernoulli process with rate λi, i.e. λi = P(Ai(τ) = 1)
and Ai(τ) ∈ {0, 1} for all i, τ ≥ 0.1 Let Qi(τ) ∈ N be the
number of packets in queue i at the beginning of time slot
[τ, τ + 1).

The work from queues is served at the unit rate subject to
interference constraints. Specifically, let G = (V,E) denote
the inference graph : (i, j) ∈ E implies that queues i and
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1The result in this paper extends easily even for (non-Bernoulli) adver-
sarial arrival processes satisfying

∑t−1
τ=s Ai(τ) ≤ λi(t − s) + w, with

(fixed) w <∞, for all 0 ≤ s < t.

j can not transmit simultaneously since their transmissions
interfere with each other. Formally, let σi(τ) ∈ {0, 1} denote
whether the queue i is (successfully) transmitting at time τ ,
and let σ(τ) = [σi(τ)]. Then, for τ ≥ 0,

σ(τ) ∈ I(G)
∆
= {ρ = [ρi] ∈ {0, 1}n : ρi + ρj ≤ 1 for all (i, j) ∈ E},

i.e. I(G) is the set of independent sets of G. The resulting
queueing dynamics can be summarized as

Qi(τ + 1) = Qi(τ)− σi(τ)I{Qi(τ)>0} +Ai(τ),

for τ ≥ 0 and 1 ≤ i ≤ n. Here I{x} = 1 if x =‘true’ and 0
if x =‘false’.

Now an algorithm, which we shall call medium access, is
required to choose σ(τ) ∈ I(G) at the beginning of each
time τ . A good medium access algorithm should choose
σ(τ) so as to utilize the wireless medium as efficiently as
possible. Putting it another way, it should be able to keep
queues finite for as large a set of arrival rates λ = [λi] as
possible. Towards this, define the capacity region

Λ
∆
=
{
y ∈ Rn+ : y <

∑
σ∈I(G)

ασσ with ασ ≥ 0,

∑
σ∈I(G)

ασ ≤ 1
}
.

Since σ(τ) ∈ I(G), the effective ‘service’ rate induced by
any algorithm over time is essentially in the closure of Λ.
Therefore, a medium access algorithm can be considered
optimal, if it can keep queues finite, for any λ ∈ Λ.
Formally, if the state of the queueing system including the
algorithm’s decisions and queue-sizes can be described as a
Markov chain, then the existence of a stationary distribution
for this Markov chain and its ergodicity effectively implies
that the queues remain finite. A sufficient condition for this
is aperiodicity and positive recurrence of the corresponding
Markov chain. This motivates the following definition.

Definition 1 (Optimal) A medium access algorithm is
called optimal if for any λ ∈ Λ the (appropriately defined)
underlying network Markov chain is positive recurrent and
aperiodic.



To be of practical use, medium access algorithm ought to
be simple and totally distributed, i.e. should use only local
information like queue-size, and past collision history. In
such an algorithm, each node makes the decision to transmit
or not on its own, at the beginning of each time slot. At the
end of the time slot, it learns whether attempted transmission
was successful or not (due to a simultaneous attempt of
transmission by a neighbor). If a node does not transmit,
then it learns whether any of its neighbors attempted trans-
mission. And, ideally such an algorithm should be optimal.

1.1. Prior Work

Design of an efficient and distributed medium access
algorithm has been of interest since the ALOHA algorithm
for the radio network [1] and Local Area Networks [16] in
the 1970s. Subsequently a variety of the so-called back-off
algorithms or protocols have been extensively studied. Var-
ious negative and positive properties of back-off protocols
were established in various works [13], [18], [14], [25], [2],
[15].

Specifically, Hastad, Leighton and Rogoff [9] studied a
medium access algorithm in which each node or queue
attempts transmission at each time with probability that
is inversely proportional to a polynomial function of the
number of successive failures in the most recent past. They
established it to be optimal when the interference graph
G is complete, or equivalently all nodes are competing
for one resource (as in the classical Ethernet/LAN). The
optimality of this polynomial back-off algorithm was further
established for G when it is induced by matching con-
straints in a bipartite graph by Goldberg and MacKenzie
[7]. However, the optimality of polynomial back-off or any
other totally distributed medium access algorithm remained
open for general graphs. The interested reader may find a
good summary of results until 2001, on medium access on
a webpage maintained by Goldberg [8].

In the past year or so, significant progress has been made
towards this open question. Specifically, Rajagopalan, Shah
and Shin (RSS) [19], [20] and Jiang and Walrand (JW)
[11] proposed two different medium access algorithms that
operate in continuous time assuming immediate collision
detections or the so called perfect carrier sense informa-
tion. The RSS algorithm is optimal but requires a bit of
information exchange between each pair of neighboring
nodes per unit time. The JW algorithm was established to
have a weaker form of optimality, called ‘rate stability’,
by Jiang, Shah, Shin and Walrand [10]. The perfect carrier
sense information, utilized in JW and RSS algorithms, is not
available in practice in the context of wireless networks.

In summary, both algorithms stop short of being totally
distributed and optimal. Further, both of them operate in
continuous time (with immediate collision detections or
perfect carrier sense) and thus effectively avoiding the issue
of loss in performance due to contention present in discrete

time (with delayed collision detections) considered in this
paper. We take a note of a recent work by Jiang and Walrand
that extends JW to the setting of this work [12].

1.2. Our Contribution

The main result of this paper is a totally distributed
medium access algorithm that is optimal for any interference
graph G. It resolves an important question in distributed
computation that has been of great practical interest. The
proposed medium access algorithm builds on the RSS algo-
rithm and overcomes its two key limitations by adapting it to
the discrete time and removing the need for any information
exchange between neighboring nodes. In what follows, we
explain in detail how we overcome such limitations.

In the proposed medium access algorithm, each node
attempts transmission in each time slot based on: (a) whether
it managed to successfully transmit in the previous time slot,
or whether any of its neighbors attempted to transmit in the
previous time slot; (b) local queue-size and estimation of
the “weight” of the neighbors. Given this information, each
node in the beginning of each time slot attempts transmission
with probability depending upon (a) and (b). Specifically,
if the node was successful in the previous time, it does
not transmit in this time with probability that is inversely
proportional to its own weight that depends on (b). Else if
no other neighbor attempted transmission in the previous
time then a node attempts transmission with probability 1

2 .
Otherwise, with probability 1, a node does not transmit.

In such an algorithm, the only seeming non-local infor-
mation is the estimation of the neighbors’ weight in (b).
An important contribution of this work is the design of a
non-trivial learning mechanism, based only on information
of type (a), that estimates the neighbors’ weight without any
explicit information exchange. We note that, in contrast, the
RSS algorithm had required explicit information exchange
for estimating the neighbors’ weight.

To establish optimality of the proposed algorithm, we
show that, in essence, the value of

∑
i σi(τ) log logQi(τ) is

close to maxρ∈I(G)

∑
i ρi log logQi(τ), on average for all

large enough τ . That is, effectively the distributed medium
access chooses σ(τ) that is (close to) maximum weight
independent set of G when node weights are equal to log log
of the queue-sizes. Such a property is known (cf. [22], [24])
to imply that

∑
i F (Qi(τ)) (where F (x) =

∫ x
0

log log y dy)
is a potential (or Lyapunov, energy) function for the system
state so that the function is expected to decrease by at
least a fixed amount as long as λ ∈ Λ. This subsequently
establishes that the network as a Markov chain is positive
recurrent (implying the optimality of the algorithm).

We establish the near optimality of∑
i σi(τ) log logQi(τ) under the medium access algorithm

in two steps. To begin with, we observe that the evolution
of σ(τ) under the algorithm is a Markov chain on the
space of independent sets I(G) with time-varying transition



probabilities. For this Markov chain, at any particular time
τ , let π(τ) be the stationary distribution at time τ (given
transition probabilities at time τ ).

In the first step, we study this (time-varying, stationary)
distribution π(τ) and show that it is approximately ‘product-
form’. To obtain such an approximate characterization, we
show that the transition probabilities of the Markov chain are
well approximated by those of a reversible Markov chain
which has a product-form stationary distribution. A novel
comparison relation between stationary distributions of two
Markov chains in terms of the relation between their tran-
sition probabilities leads to the approximate product-form
characterization of π(τ). We note that the RSS algorithm
(and similarly, the JW algorithm) had used the continuous
time setting to make sure that the corresponding Markov
chain was reversible and hence had a product-form distribu-
tion to start with; such reversibility is lost in general in the
discrete time setting of this paper. Using this approximate
product-form characterization of π(τ) in addition to the
Gibbs’ maximal principle (cf. [6]), we prove that π(τ) has
the desired property; namely, that

∑
i σi log logQi(τ) is

close to maxρ∈I(G)

∑
i ρi log logQi(τ) if σ = [σi] is given

by the distribution π(τ). We call this the maximum-weight
property at stationarity.

In the second step, we show that the Markov chain, despite
it being time-varying, is always near stationarity for large
enough τ by carefully estimating the effective mixing time of
the time-varying Markov chain. In other words, the distribu-
tion of σ(τ) is close to π(τ) for large enough τ . Therefore,
the maximum-weight property at stationarity (established in
the first step) implies that

∑
i σi(τ) log logQi(τ) is close

to maxρ∈I(G)

∑
i ρi log logQi(τ). To guarantee the near

stationarity property as a consequence of such a mixing
analysis, it is required that a design of ‘weight’ maintained
by each node in the medium access algorithm utilizes
the neighbor’s weight information. As mentioned earlier,
we resolve this by developing a learning mechanism that
estimates the neighbor’s weight based on the information
whether it transmitted or not thus far. The success in this
second step is primarily due to our novel design of the
learning mechanism incorporated well with the mixing time
analysis of the time-varying Markov chain.

1.3. Organization

Remainder of the paper is organized as follows. Section
2 presents formally the medium access algorithm and a
statement of the main result. Section 3 presents necessary
technical preliminaries that are useful for establishing the
results. Section 4 provides a high-level summary of the proof
of the main result. The detailed proof is omitted from this
extended abstract due to space constraints. An interested
reader can find them in the full version of this paper [21].
Section 5 presents a generic result that compares stationary
distributions of two Markov chains based on the relation

between their transition probabilities. This result, utilized
crucially in the proof of the main result, could be of broad
interest in its own right. For example, it naturally suggests a
notion of approximate product-form distributions. In Section
6, we discuss about high-level contributions of this paper.

2. ALGORITHM AND ITS OPTIMALITY

The medium access algorithm is randomized, distributed,
simple and runs in discrete time with time indexed by τ ≥ 0.
Each node i ∈ V maintains weight Wi(τ) ∈ R+ over τ ≥ 0.
In the beginning of each time slot τ ≥ 0, each node i ∈ V
decides to attempt transmission or not as follows:

1. If the transmission of node i was successful at τ − 1,
then

it attempts to transmit with probability 1− 1
Wi(τ) .

2. Else if no neighbor of i attempted transmission at τ−1,
then

it attempts to transmit with probability 1
2 .

3. Otherwise, it does not attempt to transmit with proba-
bility 1.

Now we describe how each node i maintains weight
Wi(τ):

Wi(τ) = max

{
logQi(τ), max

j∈N (i)
exp

(√
log g(Aij(τ))

)}
,

(1)
where by log and log log we mean [log]+ and [log log]+
respectively; g : R+ → R+ is defined as g(x) =
exp(log log4 x); by log log4 x we mean (log log x)4, log
represents loge; and N (i) = {j ∈ V : (i, j) ∈ E} represents
neighbors of node i. Note that Wi(τ) ≥ 1 for all τ by
definition. In above, Aij(·) is a ‘counter’ maintained by
node i as a ‘long term’ estimate of weight Wj(·). This is
maintained along with another ‘counter’ Bij(·) by node i as a
‘short term’ estimate of Wj(·). Initially, Aij(0) = Bij(0) = 0
for all j ∈ N (i) and i ∈ V . For each j ∈ N (i), Aij(·) and
Bij(·) are updated by node i at τ as follows:

1. If j ∈ N (i) attempted transmission at τ − 1, then

Aij(τ) = Aij(τ − 1) and Bij(τ) = Bij(τ − 1) + 1.

2. Else if Bij(τ − 1) ≥ 2, then

Aij(τ) =

{
Aij(τ − 1) + 1 if Bij(τ − 1) ≥ g(Aij(τ − 1))

Aij(τ − 1)− 1 otherwise

and reset Bij(τ) = 0.

3. Otherwise, Aij(τ) = Aij(τ − 1) and Bij(τ) = 0.

Observe that Bij(·) counts how long neighbor j keeps
attempting transmission consecutively. When j’s transmis-
sions are successful, the random period of consecutive



transmissions is essentially distributed as per the geometric
distribution with mean Wj(·) due to the nature of our algo-
rithm. Thus Bij(·) provides a short-term (or instantaneous)
estimation of Wj(·). To extract a robust estimation of Wj(·)
from such short-term estimates, the long-term estimation
Aij(·) is maintained: it changes by ±1 using Bij(·) at most
once per unit time. Specifically, as per the above updates,
g(Aij(·)) is acting as an estimation of Wj(·). Now it is
important to note that the choice of g (defined above) plays a
crucial role in the quality of estimate of Wj(·). The change
in estimation g(Aij(·)), when Aij(·) is updated by ±1, is
roughly g′(Aij(·)). Since Wj(·) is changing over time, it is
important to have g′(·) not too small. On the other hand, if
it is too large then it is too sensitive and could be noisy just
like Bij(·). A priori it is not clear if there exists a choice
of any function g that allows for keeping Aij(·) as a good
enough estimation of W i

j (·), which subsequently leads to
positive-recurrence of the network Markov chain. Somewhat
surprisingly (at least to us), we find that indeed such a g
exists and is as defined above: g(x) = exp(log log4 x). As
per our proof technique, g(x) = exp(log logα x) works for
any α > 2; however we shall stick to the choice of α = 4
in the paper. Section 4 provides the reasons on why such
a choice of function g is necessary and sufficient. Now we
state the main result of this paper.

Theorem 1 The medium access algorithm as described
above is optimal for any interference graph.

3. TECHNICAL PRELIMINARIES: A MARKOV CHAIN AND
CRITERIA FOR POSITIVE RECURRENCE

This section provides useful technical prerliminaries for
establishing Theorem 1. We start by describing an associated
finite state Markov chain, characterization of its stationary
distribution, bounds for mixing time and a criteria for
establishing positive recurrence of a countable state-space
Markov chain.

3.1. A Markov Chain (MC) of Interest

We describe a Markov chain over finite state space,
whose time-varying version will describe the evolution of
the medium access algorithm described in Section 2. As we
described in Section 4, our strategy for proving Theorem 1
crucially relies on understanding the stationary distribution
and mixing time of the (finite state) Markov chain.

Description. The Markov chain evolves on state space
I(G) × {0, 1}n and uses node weights W = [Wi] ∈ Rn+
with Wmin ≥ 1. Given (σ,a) ∈ I(G) × {0, 1}n, the next
(random) state (σ′,a′) ∈ I(G) × {0, 1}n is obtained as
follows:

1. Each node i chooses ri ∈ {0, 1} uniformly at random,
i.e. ri = 1 with probability 1/2 and 0 otherwise.

Temporarily set

a′i =

{
ri if aj = 0 for all j ∈ N (i)

0 otherwise
.

2. Each node i sets σ′i (and possibly resets a′i) as follows:
◦ If σi = 1, then set

(σ′i, a
′
i) =

{
(0, 0) with probability 1

Wi
,

(1, 1) otherwise.

◦ Else if aj = 0 for all j ∈ N (i), then set

σ′i =

{
1 if a′i = 1 and a′j = 0 for all j ∈ N (i)

0 otherwise
.

◦ Otherwise, set (σ′i, a
′
i) = (0, 0).

Stationary distribution. Let Ω = I(G)× {0, 1}n. Then Ω
is the state space of the above described Markov chain; let
Pxx′ denote its transition probability for x = (σ,a), x′ =
(σ′,a′) ∈ Ω. We characterize the stationary distribution of
this Markov chain as follows.

Lemma 2 Staring from initial state (0,0), the Markov
chain P is recurrent and aperiodic; let its recurrence class
be denoted by Ω′ ⊂ Ω; (σ,0) ∈ Ω′ for all σ ∈ I(G).
Therefore, the Markov chain P has a unique stationary
distribution π on Ω′ such that for any (σ,a) ∈ Ω′

π(σ,a) ∝ exp
(
σ · logW + U(σ,a)

)
, (2)

where U : Ω′ → R+ is such that |U(σ,a)| ≤ n4n log 2 for
all (σ,a) ∈ Ω′.

To achieve the form (2), we use the classical Markov chain
tree theorem [3]. Our proof strategy can be of broad inter-
est to characterize such a form for non-reversible Markov
chains via comparing reversible Markov chains. The proof
of Lemma 2 is presented in the full version of this paper
[21]. See Section 5 for a generic version of this comparison
result.

Mixing time. Now we establish a bound on the ‘mixing
time’ of P – the time to reach near stationary distribution
starting from any initial distribution. We shall use the total-
variation distance: given distributions ν,µ on a finite state
space Ω′, define ‖ν − µ‖TV =

∑
x∈Ω′ |νx − µx|.

Lemma 3 Given ε ∈ (0, 0.5) with n ≥ 2, for any distribu-
tion µ on Ω′,

‖µP τ − π‖TV < ε,

for all τ ≥ Tmix(ε, n,Wmax), where

Tmix ≡ Tmix(ε, n,Wmax)

= 4n4n+1+1W 6n
max log

(4n4nW n
max

2ε

)
. (3)

We use the Cheeger’s inequality [4], [23] to achieve the
mixing bound (3). The proof of Lemma 3 is presented in
the full version of this paper [21].



3.2. Ergodicity, Positive recurrence and Lyapunov-Foster

To establish optimality of the medium access algorithm,
we need to show that the underlying network Markov chain,
which has countably infinite state space, is ergodic, i.e. that it
has the unique stationary distribution to which it converges.
We briefly recall known methods from literature that will be
helpful in doing so.

Consider a discrete time Markov chain X(·) on countably
infinite state space X. State x ∈ X is said to be recurrent
if P(Tx = ∞) = 0, where Tx = inf{τ ≥ 1 : X(τ) =
x : X(0) = x}. Specifically, a recurrent state x is called
positive recurrent E[Tx] < ∞, or else if E[Tx] = ∞
then it is called null recurrent. For an irreducible Markov
chain, if one of its state is positive recurrent, the so are
all; we call such a Markov chain positive recurrent. An
irreducible, aperiodic and positive recurrent Markov chain
is known to be ergodic: it has unique stationary and starting
from any initial distribution, it converges (in distribution) to
stationary distribution. Therefore, it is sufficient to establish
positive recurrence property for establishing ergodicity of
the Markov chain in addition to verifying irreducibility and
aperiodicity properties. We shall recall a sufficient condition
for establishing positive recurrence, known as the Lyapunov
and Foster’s criteria.

Lyapunov and Foster’s criteria. This criteria utilizes exis-
tence of a “Lyapunov”, “Potential” or “Energy” function of
the state under evolution of the Markov chain. Specifically,
consider a non-negative valued function L : X → R+ such
that supx∈X L(x) =∞. Let h : X→ Z+ be another function
that is to be interpreted as a state dependent “stopping time”.
The ‘drift’ in Lyapunov function L in h-steps starting from
x ∈ X is defined as

E[L(X(h(x)))− L(X(0)) | X(0) = x ].

Following is the criteria (see [5], for example):

Theorem 4 For any κ > 0, let Bκ = {x : L(x) ≤ κ}.
Suppose there exist functions h, k : X → Z+ such that for
any x ∈ X,

E [L(X(h(x)))− L(X(0)) | X(0) = x ] ≤ −k(x),

that satisfy the following conditions:
(L1) infx∈X k(x) > −∞.
(L2) lim infL(x)→∞ k(x) > 0.
(L3) supL(x)≤γ h(x) <∞ for all γ > 0.
(L4) lim supL(x)→∞ h(x)/k(x) <∞.
Then, there exists constant κ0 > 0 so that for all κ0 < κ,
the following holds:

E [TBκ | X(0) = x ] < ∞, for any x ∈ X

sup
x∈Bκ

E [TBκ | X(0) = x ] < ∞,

where TBκ := inf{τ ≥ 1 : X(τ) ∈ Bκ} i.e. the first return
time to Bκ. In other words, Bκ is positive recurrent.

Theorem 4 implies that if (L1) - (L4) are satisfied and Bκ
is a finite set, the Markov chain is positive recurrent.

4. PROOF OF THEOREM 1: AN OVERVIEW

This section provides an overview of the proof of Theorem
1 to explain the key challenges involved in establishing it as
well as intuition behind the particular choice of function g.
The goal in this section is not to provide precise arguments
but only provide intuition so as to assist a reader in under-
standing the structure of the proof. The complete proof with
all details is stated in the full version of this paper [21].

Theorem 1 requires establishing positive recurrence of an
appropriate Markov chain that describes the evolution of the
network state under the medium access algorithm described
(as long λ ∈ Λ). To that end, define

X(τ) = (Q(τ),σ(τ),a(τ),A(τ),B(τ))

where Q(τ) represents vector of queue-sizes; a(τ) ∈
{0, 1}n denotes the vector of transmission attempts by nodes
at time τ ; σ(τ) ∈ I(G) denotes the vector of resulting
successful transmissions in time τ (clearly, σ(τ) ≤ a(τ));
and A(τ), B(τ) ∈ Z2|E|

+ denote the vector of long-term
and short-term estimations maintained at nodes as explained
in Section 2. Then it follows that under medium access
algorithm X(·) is a Markov chain. It can be easily checked
that under this Markov chain, state 0 in which all compo-
nents are 0, has positive probability of transiting to itself.
Further, starting from any state, X(·) has positive probability
of reaching state 0. Therefore, X(·) is always restricted to
the recurrence class containing state 0; and over this class
it is aperiodic. Therefore, it is sufficient to establish positive
recurrence of X(·) over this recurrence class to imply that
X(·) is ergodic.

Now as discussed in Section 3, a generic method to establish
positive-recurrence of a Markov chain involves establishing
that certain real-valued function over the state-space of the
Markov chain is Lyapunov or Potential function for the
Markov chain. Roughly speaking, this involves establishing
that on average the value of this function decreases under the
dynamics of the Markov chain if its value is high enough;
Theorem 4 states the precise conditions that need to be
verified. With this eventual goal, we consider the following
function that maps state x = (Q,σ,a,A,B) to non-negative
real values as

L(x) =
∑
i

F (Qi) +
∑

i;j∈N (i)

(
(Aij)

2 + g(−1)(Bij)
)
, (4)

where F (x) =
∫ x

0
log log y dy with log log y = [log log y]+;

the inverse function of g(x) = exp(log log4 x) is g(−1)(x) =
exp(exp(log1/4 x)). With abuse of notation, we shall use
L(τ) to denote L(X(τ)). Now

L(τ) = LQ(τ) + LA,B(τ),



where

LQ(τ) =
∑
i

F (Qi(τ))

LA,B(τ) =
∑

i;j∈N (i)

(
(Aij(τ))2 + g(−1)(Bij(τ))

)
.

The proof is devoted to establish the negative-drift prop-
erty of L(·), i.e. if X(τ) = x is such that L(τ) is large
enough (i.e. larger than some finite constant), then value
of L(·) decreases enough on average. This property is
established by considering two separate cases.

Case One. When L(τ) is large due to the component
LA,B(τ) being very large. Formally, when

max
i,j

(
g(Aij(τ)), Bij(τ)

)
≥ W 3

max(τ),

where Wmax(τ) = maxiWi(τ).

Case Two. When L(τ) is large due to the component
LQ(τ) being very large. Formally, when

max
i,j

(
g(Aij(τ)), Bij(τ)

)
< W 3

max(τ),

where Wmax(τ) = maxiWi(τ).

The above claim is formalized next. Recall that node weights
W are determined by Q and A as per (1). Therefore,
given state x = (Q,σ,a,A,B), the weight vector W is
determined. With this in mind, let

C(x) = max
{
g(Amax), Bmax

}
, (5)

where Amax = maxi,j A
i
j and Bmax = maxi,j B

i
j . Then h

and k are defined (for two different cases) as

h(x) =

{
C(x)n if C(x) ≥W 3

max,
1
2 exp

(
exp(
√

logWmax)
)

otherwise.
(6)

k(x) =

{
C(x)2n if C(x) ≥W 3

max,

h(x)
√

logWmax otherwise.
(7)

With these definitions, we shall establish the following.

Lemma 5 Let λ ∈ Λ. Then for any x with L(x) large
enough,

E
[
L(h(x))− L(0) |X(0) = x

]
≤ −k(x). (8)

It can be easily checked that L, h and k along with Lemma
5 satisfy conditions of Theorem 4. Now L(x) → ∞ as
|x| → ∞ where |x| = |Q| + |σ| + |a| + |A| + |B| with
|σ|, |a| being equal to the ordering of them and |Q|, |A| and
|B| are standard 1-norm. Therefore, Bκ = {x : L(x) ≤ κ}
is a finite set. Therefore, it follows that the Markov chain
X(·) is positive recurrent; it is aperiodic and irreducible
on the recurrence class containing 0 as discussed before.
Therefore, it follows that it is ergodic. That is medium

access algorithm of interest is optimal establishing Theorem
1. In the remainder this section, we shall provide intuitive
explanation of how Lemma 5 can be established. The preicse
details can be found in the full version of this paper [21].
As mentioned above, the proof is argued for two separate
cases: in the first csae, x with C(x) ≥ W 3

max, and in the
second case, C(x) <W 3

max.

Case One: C(x) ≥ W 3
max In this case, there exists i ∈ V

and j ∈ N (i) so that g(Aij(τ)) or Bij(τ) is larger than
W 3

max(τ). Using the property of the estimation procedure
(which updates Aij(·)), we show that the LA,B(·) decreases
on average by a large amount; it is large enough so that
it dominates the possible increase in any other components
of L(·). Such a strong property holds because as per the
algorithm, g(Aij(τ)) and Bij(τ) continually try to estimate
Wj(τ) and hence if either of them is larger than W 3

max(τ),
they ought to decrease by a large amount in a short time.
Indeed, to translate this property into sufficient decrease of
L(·), the careful choice of LA,B(·) is made.

Case Two: C(x) <W 3
max In this case, for each i ∈ V and

j ∈ N (i), g(Aij(τ)) and Bij(τ) are smaller than W 3
max(τ).

To establish the decrease in L(·), we show that in this case
LQ(·) decreases by large enough amount; large enough so
that it dominates the possible increase in LA,B(·). This
case crucially utilizes the property of the medium access
algorithm, the choice of the weights Wi(·) for i ∈ V and
the form of function g. The precise details explaining how
these play roles in establishing this decrease in LQ(·) is
explained in the full version of this paper [21]. In this
extended abstract, we shall provide key ideas behind these
somewhat involved arguments.

The property that LQ(·) decreases by large enough
amount follows if we establish that the set of transmitting
nodes σ(τ) is such that∑

i

σi(τ) log logQi(τ) ≈ max
ρ∈I(G)

∑
i

ρi log logQi(τ). (9)

To establish (9), using the condition of the second case
g(Aij(τ)) < W 3

max(τ) for all i ∈ V and j ∈ N (i), we
essentially show that

g(Aij(τ)) ≈Wj(τ), for all i ∈ V, j ∈ N (i), (10)∑
i

σi(τ) log logQi(τ) ≈ max
ρ∈I(G)

∑
i

ρi logWi(τ). (11)

To see why (10) and (11) are sufficient to imply (9), note
that∣∣ logWi(τ)− log logQi(τ)

∣∣ ≤ max
j∈N (i)

√
log g(Aij(τ))

≈ max
j∈N (i)

√
logWj(τ)

� max
ρ∈I(G)

∑
i

ρi logWi(τ),



when Wmax(τ) (or Qmax(τ)) is very large. Therefore,

max
ρ∈I(G)

∑
i

ρi log logQi(τ) ≈ max
ρ∈I(G)

∑
i

ρi logWi(τ).

In summary, to establish desired decrease in LQ(·), it boils
down to establishing (10) and (11).

To establish (10), it is essential for g(·) to be growing
fast enough so that if g(Aij(τ)) is very different (in this
case, smaller) compared to Wj(τ), then under the execution
of the algorithm, it quickly converges (close) to Wj(·). For
this, it is important that g(Aij(·)) should change at a faster
rate compared to the rate at which Wj(·) changes. Towards
that, note that if Aij(·) is updated (by unit amount) then
g(Aij(·)) roughly changes by amount g′(Aij(τ)), which is at
least

g′(Aij(τ)) > g′(g(−1)(Wmax(τ)3)).

Here we have used the fact that g′ is a decreasing function
and g(Aij(τ)) is at most Wmax(τ)3. Using properties of
function g, we establish that Wj(τ) changes per unit time
by at most

Wj(τ)

g(−1)
(
exp

(
log2Wj(τ)

)) .
For the purpose of developing an intuition regarding the
choice of g, consider j ∈ arg maxiWi(τ), i.e. Wj(τ) =
Wmax(τ). Then, such a Wj(τ) changes as

Wj(τ)

g(−1)
(
exp

(
log2Wj(τ)

)) =
Wmax(τ)

g(−1)
(
exp

(
log2Wmax(τ)

)) .
Therefore, to have g such that the change in Wj(·) is slower
than that in g(Aij(·)), we must have

g′(g(−1)(Wmax(τ)3)) >
Wmax(τ)

g(−1)
(
exp

(
log2Wmax(τ)

)) .
Our interest will be having properties holding when
Wmax(τ) (or Qmax(τ)) is large enough. This leads to the
condition that

lim
x→∞

g′(g(−1)(x3))
g(−1)

(
exp

(
log2 x

))
x

> 1.

It can be checked that the above condition is satisfied if
g(x) does not grow slower than exp(log logα x) for some
constant α > 2.2 That is, we need g to be growing roughly
at least as fast as the choice made in the description of our
algorithm in Section 2.

Next, discussion on how we establish (11), which will
require another condition on g(·) to be growing slow enough,
in contrast to the fast enough growing condition for (10).
Effectively, we need to establish that µ(τ), the distribution
of σ(τ) under the algorithm, is concentrated around the

2We say g does not grow slower and faster than f if limx→∞
g(x)
f(x)

> 0

and limx→∞
g(x)
f(x)

<∞, respectively.

subset of schedules with high-weight, i.e. roughly speaking
the subset{
ρ̃ = [ρ̃i] ∈ I(G) :

∑
i

ρ̃i logWi(τ)

≈ max
ρ∈I(G)

∑
i

ρi logWi(τ)
}
. (12)

To that end, consider the evolution of schedule σ(τ) =
[σi(τ)] and weight W (τ) = [Wi(τ)] under the algorithm.
Now the distribution of σ(τ) depends on the schedule
σ(τ − 1) and weight W (τ − 1). More specifically, the
evolution of σ(τ) can be thought of as a time-varying
Markov chain with its transition matrix P (τ) being function
of the time-varying W (τ). That is, for ∆ ≥ 1

µ(τ) = µ(τ −∆)P (τ −∆) · · ·P (τ − 1).

In above, we assume that the distribution µ(·) represents an
|I(G)| dimensional row vector, P (·) represents an |I(G)|×
|I(G)| probability transition matrix, and their product on
the right hand side should be treated as the usual vector-
matrix multiplication. The first step towards establishing
concentration of µ(τ) around the subset of I(G) with
high-weight (cf. (12)) is establishing the existence of an
appropriate ∆ ≥ 1:

(a) ∆ is small enough so that

P (τ −∆) · · ·P (τ − 1) ≈ P (τ)∆.

(b) ∆ is large enough so that

µ(τ −∆)P (τ)∆ ≈ π(τ),

where π(τ) is the stationary distribution of P (τ), i.e.
π(τ) = π(τ)P (τ).

By finding such ∆, it essentially follows that µ(τ) ≈ π(τ).
The second step towards establishing concentration of µ(τ)
around the high-weight set involves establishing that π(τ)
is approximately product-form with respect to the weights
W (τ) (cf. Lemma 2). Therefore, as a consequence of Gibb’s
maximal principle for product-form distributions, it follows
that π(τ) is concentrated around the subset of I(G) with
high-weight (cf. (12)). Subsequently, this establishes that
µ(τ) is concentrated around the subset of I(G) with high-
weight (cf. (12))

Now we discuss the remaining task of showing the
existence of ∆ so that (a) and (b) are satisfied. This is where
we shall discover another sets of conditions on g that it must
be of the form exp(log logα x) with α > 2. Now for (b) to
hold, it is required that ∆ is larger than the mixing time of
P (τ). Using Cheeger’s inequality [4], [23], we prove that it
is sufficient to have

∆ > f1(Wmax(τ)) with f1(x) = Θ(x6n+1). (13)



The precise definition of f1(·) is presented in Lemma 3.3

Next, for ∆ to satisfy (a), observe that

‖P (τ −∆) · · ·P (τ − 1)− P (τ)∆‖

≤
∆∑
s=1

‖P (τ −∆) · · ·P (τ − s− 1)

(P (τ − s)− P (τ))P (τ)s−1‖

≤
∆∑
s=1

‖P (τ − s)− P (τ)‖,

where we use the triangle inequality with an appropriately
defined norm ‖·‖. Further, by exploring algebraic properties
of P (·) and W (·), we show that

‖P (τ − s)− P (τ)‖ ≤ f2(Wmin(τ)) · s,

where Wmin(τ) = miniWi(τ) and

f2(x) = Θ

(
x

g(−1)
(
exp

(
log2 x

))) .
Thus, it follows that

‖P (τ −∆) · · ·P (τ − 1)− P (τ)∆‖ ≤ f2(Wmin(τ)) ·∆2.

Therefore, (a) follows if ∆ satisfies

∆ <
ε√

f2(Wmin(τ))
for small enough ε > 0. (14)

From (13) and (14), it follows that a ∆ ≥ 1 satisfying (a)
and (b) exists if

f1(Wmax(τ)) <
ε√

f2(Wmin(τ))
, (15)

for large enough Qmax(τ). From (1), it follows that for any
i ∈ V ,

Wi(τ) ≥ max
j∈N (i)

exp
(√

log g(Aij(τ))
)

≈ max
j∈N (i)

exp

(√
logWj(τ)

)
≥ exp

(√
logWj(τ)

)
, (16)

for any j ∈ N (i); here we have assumed g(Aij(τ)) ≈
Wj(τ). Now let j∗ ∈ arg minjWj(τ) and j∗ ∈
arg maxjWj(τ). Since G is connected, there exists a path
connecting j∗ and j∗ of length at most D where D ≤ n−1
is the diameter of G. Then by a repeated application of (16)
along this path joining j∗ and j∗ starting with j∗, we obtain
that

Wmin(τ) ≥ exp
(

log1/2DWmax(τ)
)
. (17)

3We use the asymptotic notation Θ with respect to scaling in Wmax(·)
instead of n.

Therefore, the desired inequality (15) is satisfied for large
Wmax(τ) if

f1(Wmax(τ)) <
ε√

f2

(
exp

(
log1/2DWmax(τ)

)) .
This holds if

lim sup
x→∞

f1(x)

√
f2

(
exp

(
log1/2D x

))
= 0.

The above can be checked to hold if g does not grow faster
than exp(log logα x) for some constant α <∞.

5. A COMPARISON LEMMA

Consider two Markov chains defined on a given finite state
space, say Ω of N states. For simplicity, let Ω = {1, . . . , N}.
Let the transition probability matrices of these two Markov
chains be represented as P = [Pij ] ∈ [0, 1]N×N and Q =
[Qij ] ∈ [0, 1]N×N , respectively. Let P and Q be irreducible
and aperiodic. That is, both of them have unique stationary
distributions, which are denoted by µ = [µi]i∈Ω and ν =
[νi]i∈Ω, respectively. Define

Cij = max
{ Pij
Qij

,
Qij
Pij

}
.

Also define

C∗ ≡ C∗(P,Q) = max
1≤i,j≤N

Cij .

By definition, C∗ ≥ 1: C∗ = 1 iff P = Q; Cij = ∞ iff
there exists (i, j) such that Pij +Qij > 0 and PijQij = 0.
For a meaningful result, we shall restrict to scenario where
Cij < ∞. Recall that the relative entropy or Kullback-
Liebler distance between distribution µ and ν, denoted by
DKL(µ,ν), is defined as

DKL(µ,ν) =
∑
i∈Ω

µi log
(µi
νi

)
.

The following provides bound on DKL(µ,ν) in terms of C∗

and N .

Lemma 6 For C∗ <∞,

max
{
DKL(µ,ν), DKL(ν,µ)

}
≤ 2(N − 1) logC∗. (18)

Proof: To establish this, we shall use the characteriza-
tion of stationary distributions for any irreducible, aperiodic
finite state Markov chain given through what is known as
the ‘Markov chain tree theorem’ (cf. see [3]). To this end,
define a directed graph G = (I(G), E) with Ω as vertices and
directed edge (i, j) ∈ E if and only if Pij > 0 (equivalently
Qij > 0). Let Ti be the space of all directed spanning trees
of G rooted at i ∈ Ω. Define the weight of a tree T ∈ Ti
with respect to transition matrix P , denoted as w(T, P ), as

w(T, P ) =
∏

(i,j)∈T

Pij .



Similarly, define the weight of T ∈ Tσ with respect to Q,
denoted as w(T,Q), as

w(T,Q) =
∏

(i,j)∈T

Qij .

Then, the Markov chain tree theorem states that for any
i ∈ Ω,

µi ∝
∑
T∈Ti

w(T, P ). (19)

And, similarly for i ∈ Ω,

νi ∝
∑
T∈Ti

w(T,Q). (20)

Since the number of edges in each spanning tree is N − 1
and Pij/Qij ∈ [1/C∗, C∗] for all i, j, it follows that for a
given T ∈ Ti,

(C∗)−(N−1) ≤ w(T, P )

w(T,Q)
≤ (C∗)(N−1).

Therefore, it follows that

(C∗)−2(N−1) ≤ µi
νi
≤ (C∗)2(N−1). (21)

Therefore, it can be checked that

DKL(µ,ν) =
∑
i

µi log(µi/νi)

≤
∑
i

µi

(
2(N − 1) logC∗

)
= 2(N − 1) logC∗. (22)

Similar bound applies to DKL(ν,µ). This completes the
proof of Lemma 6.

The above Lemma is essentially tight. To see this, con-
sider two Markov chains on a line of N nodes. The Markov
chain P is such that it has the uniform stationary distribution
µ = [1/N ] while Markov chain Q is such that its stationary
distribution ν = [(1 − ρ)ρi−1/(1 − ρN )] with ρ ∈ (0, 1).
Examples of such P and Q are as follows: in P , nodes
1 and N have self-loop of probability 3/4 while all other
nodes have self-loop probability 1/2 and transition between
neighboring nodes (on the line) happen with probability
1/2; in Q the self-loop probability at nodes 1 and N are
of 1 − ρ/4, the self-loop probabilities at all other nodes is
1− ρ/4− 1/4, transition probability from node i to i+ 1 is
ρ/4 while transition probability from node i+ 1 to i is 1/4
for 1 ≤ i ≤ N − 1. For such P and Q, it can be checked

that C∗ = 1/ρ for ρ < 1/2. Further,

DKL(µ,ν) =
N∑
i=1

1

N
log
( (1− ρN )

N(1− ρ)ρi−1

)
=

1

N

( N∑
i=1

log
(1− ρN )

N(1− ρ)
+ (i− 1) log

1

ρ

)
= log

( (1− ρN )

N(1− ρ)

)
+

1

N
log
(1

ρ

)( N∑
i=1

i− 1
)

= log
( (1− ρN )

N(1− ρ)

)
+
N − 1

2
log
(1

ρ

)
. (23)

Now note that the first term in (23) scales as − logN , while
the second term scales as N

2 log(1/ρ). Therefore, effectively
DKL(µ,ν) ≈ N

2 log(1/ρ). Note that Lemma 6 implies that
DKL(µ,ν) ≤ 2(N−1) log(1/ρ). Thus upto a constant factor
(roughly 4), this result is tight.

6. DISCUSSION

As the main result of this paper, we presented a new
medium-access algorithm for an arbitrary wireless network
where simultaneously transmitting nodes must form an inde-
pendent set of the network graph. The algorithm is optimal
in the sense that network Markov chain is positive-recurrent
as long as the imposed traffic demand can be satisfied
by some scheduling algorithm. The algorithm is entirely
distributed: the only information it utilizes is its own queue-
size and the history of collision or successful transmission.
In a sense, this work settles an important question that has
been of interest in distributed computation, communication,
probability and learning.

The algorithm we presented builds upon the work of
[19] where the algorithm required a bit of information
exchange between neighbors per unit time. Specifically, the
key technical contribution of our work is to get rid of
this requirement by means of designing a novel learning
mechanism that essentially estimates the rate of a Bernoulli
process with time varying rates. This learning mechanism
could be of much broader interest.
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